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Abstract

We show. under regularity conditions, that a counting process satisfies a large deviations

principle in R, a sample-path large deviations principle in the function space D, or the Gartner-

Ellis condition (convergence of the normalized logarithmic moment generating functions) if and

only if its inverse process does. We show, again under regularity conditions, that embedded

regenerative structure is sufficient for the counting process or its inverse process to have

exponential asymptotics, and thus satisfy the Girtner-Ellis condition. These results help

characterize the small-tail asymptotic behavior of steady-state distributions in queueing models.

e.g.. the waiting time, workload and queue length.

Key words: large deviaLons, Gartner-Ellis theorem, counting processes, point processes,

cumulant generating function, waiting-time distribution, small-tail asymptotics.



1. Introduction and Summary

Let T q - T, : n Z 01 be a nondecreasing sequence of real-valued random variables with

To = 0, and let

N(t) = maxIn Z 0 : T,, 3  t) , t 0. (1)

Then N a { N(t) : t Z 0) is a counting process and Tis its inverse. Motivated by applications to

queues, see Chang [3], Chang, Heidelberger. Juneja and Shahabuddin [4], and Glynn and

Wbitt [10], we want to relate the large deviatio, m behavior of N to the large deviations beiavinr

of T. This is in the same spirit as previous relations between other limits for N and T. such as the

law of large numbers and central limit theorem; see §7 of Whitt [16]. Theorem 6 of Glynn and

Whitt [8] and §2 of Massey and Whitt (12].

A real-valued stochastic process Z a (Z(t) : t 2 0) will be said to satisfy the Ghrmer-EItis

condition with decay rate function W if its normalized logarithmic moment generating function

has a limit, i.e., if

tl1og Ee -Z(-) W(O) as - for all O e R. (2)

(For a discrete-time process, we let t run through the positive integers in (2).) For the queueing

applications, we want to know when N and T satisfy (2) for 0 in an appropriate interval. In Glynn

and Whitt [10] we consider a single-server queue with unlimited waiting space and a stationary

sequence of interarrival times independent of a stationary sequence of service times. By

Theorem I and Proposition 2 there, if the partial sums of the interarrival times and service times

each satisfy (2) with decay rate functions V.(e) and WO(0), respectively, with these decay rate

functions satisfying regularity conditions, then the steady-state waiting time has logarithtmic

asymptotics of the form x- t logP(W > x) -+ -0" as -x -,where 0" is the root of the

equationv(O) - 0,whereV(0) = ,()-q(-e). (We need (2)onlyin the neighborhood of

0".) Given this result, we want to be able to relate (2) for the interarrival-time partial sums (a



"-2"

process of the form ) to (2) for the corresponding arrival counting process (a process of the form

N).

Since log Ee z is convex in 0 for any random variable Z by H6lder's inequality, the decay rate

function V in (2) is necessarily convex with W(O) = 0. For mnonegative random variables Z,

logEeBz is also nondecreasing in 0. so that W(O) will be nondecreasing as well for the processes

we consider. Let [31 and [3" be the limits of the region of increase of W i.e.,

[3' = sup{ e: w(e) = W(-oo) ) and [3" = inf{ (8:(O) = •(ac) . (3)

The decay rate function W in (2) will be said to satisfy the auxiliary large deviations (LD)

regularity conditions if (4)-(7) below hold:

[0" > 0, (4)

W is differentiable everywhere in (-s, [3), (5)

lim W'(O) = + i jf W(j3") < =. (v is steep) , and (6)

lim'•(O) = W(011) . (7)

Note that properties (4) and (5) imply that W'"(0) > 0, so that W(O) -+ + co asO -e [.

Let I be the associated large deviations (LLD) rate function (Legendre-Fenchel transform of W)

defined by

1(x) = w*(x) a sup(Ox- W(O)) for xe R. (8)

By the Girtner (71-Ellis (61 theorem, under conditions (2) and (4)-(7). the large deviations

principle (LDP) bolds for Z with large deviations rate function I; i.e., for each Borel set A

- inf 1(x) lmt- It logP(t-'Z(t) e A)

: lIt- IlogP(t-'Z(t) e A) 5 - lnfJ(x) (9)
wn zle A

where A* &nd A are the interior and closure of A; see §lib of Bucklew [2), §2.3 of Dembo and
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Zeitouni (5] and §3.1 of Shwartz and Weiss [141. Moreover, the large deviation rate function I

and the decay rate function W are convex conjugates. i.e., they are closed (lower semiconunuous)

convex functions related by

W( =) = W"(O) = 1*(O) w sup{Ox-I(x)) for 0e R; (10)

see p. 183 of Bucklew (2].

A typical LD rated function I is depicted in Figure 1. Assuming that W is nondecreasing and

convex with W'(0) > 0, then I is nonnegative and convex with l(x) = + o for x < 0.

I(O'(0)) = 0 and 1(x) -+ co as x -+ co. Hence, I is nordecreasing in the interval ([p'(0),o.)

and nonincreasing in the interval (-.o,W'(0)1. Let y" and V be the upper and lower limits of

finiteness for 1, i.e.,

y -- sup Ix :5 W'(0) : I(x) < -- } and inf Ix Z W1'(0) : I(x) < Go} 0 (1)

We fist determine conditions under which the Gartner-Ellis limits (2) for N and T are

equivalent. All proofs appear in §2. LetW-1 be the inverse of W when W is finite. It will be clear

for this result, and later results, that T need not be discrete-time and N need not be integer valued

It suffices for N to be nonnegative and nondecreasing; then we can relate the processes by the

inverse map (26) below.

Theorem 1. If T satisfies (2) and (4)-(7), then N does too, with the possible exception of (2) for

e = Ok when W1V(PA) < -m. Similarly, if N stisfies (2) and (4)-(7), then T does too, with the

possible exception of (2) for 0 - [ when W'r(P1) < . The decay rate functions are related

by

I f. 0 < 15 .=

w,(O) = •-¥ > (-e), -PO - - ( (12)"[+-, 0 > -l -Wr(PI3) =-V --
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and

0-XN, < e T = -WN(ON)

To)= --i0'(-o) 5 7 < (13)
1+>, e> PT = -Wgj3$')= -wN(--)

for '.0.0r and M defined by (3) with 4T and WNo, where 0 > 0' 2 -. , 0 > p • 0,

0 < 0 u -and 0 < ON 0 0. Moreover, the LD rate funcons are related by

IN(X) (14)
1+ 00, otherwise,

and

it(X) IN X T: 5YT(15)J ) + 00, otherwise,

where

S=N 11YU, 14 l• (16)

1N(0) =im-Lt(x) andN(0)= + -if $J 0 (17)
Z-.P. X

and

IT(O) =UM N and Ar(O) ,+- if O. (iS)
5-.- £

The ambiguous behavior of (2) at the upper boundary poin cannot occur if ¥• (9) > 0 and

v'T(O) > 0 for all 0 in (-00,0]. We could have included this condition with (4)-(7), but It is not

required to get the LDP in (9).

The conditions of Theorem I imply dat one of the decay rae fbnction IVr and VN Is a closed

convex finction. The conclusion implies that both am. pgum 2 depicts the two inverse decay

rate functions Wr and W4' on the same graph; 'VT appears in the usual position, while VN
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increases to the left with its argument co increasing down.

To illustrate we give two simple examples. It is easy to see that the conditions of Theorem I

hold for these examples.

Example 1. For a deterministic stationary process. T, - n for all n, so that

Wr(O) =- Njv(e) = 0, while JT(l) = IN(l) = 0andlr(X) = INV(X) = + ca forx* 1.

Example 2. For arate-lPoissonprocess, Wr(e) = -log(1-e),8 < 1, and Wi(O) = e-l.

Hence, IN(x) = 1-x + xlogx, x2> 1. and IN(x) = I-x-xlogx, 0 <Sx S 1; while

IT(x) = x- 1 + log x, 0 < x < 1, and It(x) = x + log x- 1,. x 1.

The processes N and T are easily related via their behavior in semi-infinite intervals; i.e.,

T, < t if and only if N(t) • n . (19)

From (19), weobtain foranyy > 0andn 2: 1,

n-'log P(n-'T. > y) = y(yn)-V1 ogP((yn)-tN(an) < y-') . (20)

From (20) we easily get the following equivalence result

Theorem 2. Let u be a nonincreasing function and let I be a nondecreasing function. (a) There

is convergence

n-llogP(n-t T,. > y) -+ u(y) as n -+ . (21)

at all continuity points y of u if and only if

t-riogP(t-"N(t) < y-) -+ 1(y) y-1 u(y) as t-- ..s (22)

for all continuity points of y1 of F(y-' ).

(b) There is convergence

no altgP(n( nT, u y) pn 1(y) as I- -. em (23)

for all continuity points y of tif and only if
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t-'logP(t-C N(t) Z y-1) --+ 7(y- 1 ) a y- 1 1(y) as t --+ a (24)

for all continuity points y-' and d(y-).

As a relatively easy consequence of Theorem 2, we can directly relate LDPs for N and T. For

this purpose we say that the process Z satisfies a partial LDP if (9) holds for a proper subclass of

the Borel subsets. We say that an LD rate function is without flat spots if for some 1 it is strictly

decreasing where it is finite in (- a,. x-) and strictly increasing where it is finite in (. a*).

Theorem 3. Let I be a closed convex function on R without flat spots. A real-valued stochastic

process Z satisfies an LDP with rate function I if and only if it satisfies a partial LDP with rate

.function I with respect to all semi-infinite intervals (- a*, y] and [y,

We combine Theorems 2 and 3 to relate the LDPs for T and N.

Theorem 4. An LDP holds for T with lower semicontinuous rate function IT without flat spots if

and only if an LDP holds for N with lower semicontinuous rate function IN without flat spots,

where IT and IN are related by (14)-18). The functions I and u associated with Tin Theorem 2

are

u(y) = -inf 1(x) and l(y) = - int lt(x), (25)

say zy

and similarly for (N,IN).

For example, Theorem 4 and Cramnd's theorem for partial sums of ii.d. random variables in

R in J2.2 of Dembo and Zeitouni (51 immediately imply that an LDP holds for the associated

renewal counting process.

Given that conditions (2) and (4)-(7) for T or N directly imply that an LDP holds for T or N,

Theorem 4 implies that we get LDPs for both T and N under the conditions of Theorem 1.

Elementary convex analysis implies that the decay rate functions W7r and 'PH and the LD rate

functions IT and IN, are related by (12)-(18), see §2. The remaining step in the proof of
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Theorem I (in §2) is to prove that the G-rtner-Ellis limit (2) holds for both T and N.

We now discuss related results. First, we observe that a sample-path or function-space

version of Theorem 4 is easy to establish as well. For this purpose, recall that an LD rate function

I is good if all the level sets are compact. Paralleling §7 of Whirr [161, for the function space

version it is convenient to work with the space say S, of real-valued functions x on [0,=) that are

right continuous with left limits, are unbounded above and have x(0) ? 0. endowed with the

Skorohod [15] MI topology extended to functions on [0,aa). By Theorem 7.1 of [161, the first-

passage-time function, defined for any xe S by

x'(t) = infIs x(s) > t) t > 0, (26)

is continuous on this space. Of course, a major reason for introducing this MI topology is that

the first passage time function in (26) is not continuous in the topology of uniform convergence

on bounded intervals.

In the subset ST of nondecreasing functions in S. the MI topology is equivalent to poinrwise

convergence at all continuity points of the limit function. Note that the first passage time function

in (26) maps Sinto ST. Also note that IN(t)) is not directly mapped into (SWj ). but instead

- (:0 = S , t Z 0. However, the difference between Sj W and S W is asymptotically

negligible.

Hence, we obtain the following result from the contraction principle; p. 110 of Dembo and

Zeitoumi [5].

Theorem S. In ihefwncdon-space (S T ,M1 ), a s=nple-path LDP holds for { n- I T Tn : n Z I

with good rate function 1T if and only if a sample-path LDP holds for (n-I N(nt) : n Z I I with

good rate function 7N. where

IN(X) - lr(x-) • (27)



For applications, it j, convenient to work with the restrctions ST of the space ST to functions

on the subinter .. [0,t]. The inverse function in (26) is easily modified to produce a map from

S, to S, and for suitably large ti, the definition (26) applies in S13. Let .•,(0) denote the

space of absolutely continuous functions * on [0,t1, as in Mogulskii's [131 sample-path LDP for

partial sums of i.i.d. random variables in §5.1 of Dembo and Zeitouw [51. The following result

and Mogulskii's theorem imply a sample path LDP for renewal counting processes.

Theorem 6. The sample-path LDP holds for { n- T d :n 1 I) in (ST ,M, ) with good L.) rate

function

Ir(0)-- I (•S)) ds, if * e sltg(O) (28)
otherwise

for IT a good rate function on R. for all r > 0. if and only if the sample-path LDP holds for

{ -N(nt) : n > 1 ) in ($zS,Mi ) with good LD rae function.

{iIo (*(s))ds, if # e s ,(0) (29)

for 'lN a good rate fliction on RP for all I > 0. with IT and Iti related by (14)-(18).

We remark tha the LD rate functions on ST in (28) and (29) are consistent with the on,

dimensional LDP, ie., we can apply the contraction principle in §4.2 of Dembo and Zeitouni 1'k

with the projection map to obtain

-I
ITZ iuf iIM() :*E 4S11%(0),W() - Z

inf( 0 IT(ý(S))dS 0 ei"(1(O), 1(#) - Z) - IT(Z)

by the convexity of IT.



-9-

We remark that we could obtain the desired Gartner-Ellis limit (2) for both T and N if we start

with a sample path LDP for one of T and N by applying Theorem 6 and Varadhan's integral

lemma; see §4.3 of Dembo and Zeitouni [5]. However, our conditions in Theorem 1 evidently do

not directly imply a sample-path LDP.

So far we have shown how to relate LD asymptotics for T and N. Now we want to obtain

general sufficient conditions for this LD asympxotics to hold for one of these processes. To do so,

we will exploit regenerative stucture. In particular, we will assume that N(t) is a cumulative

process with respect to a sequence of regeneration times { S, : n > 0) and So = 0. (We could

equally well start with { T. I.) We will require that the distribution of T. = S(n)-S(n- I ) be

spread out; see p. 140 of Asmussen [1]. Our result is stronger than (2). It also applies to general

cumulative processes. Another LD result for regenerative processes is in Kuczek and Crank [11];

they use different arguments.

Let 0(0,t) be the moment generating function of N(t). i.e.,

O(N,t) ( Eee'IO) , t 2 0. (31)

If N is a cumulative process, then 0(0,.) satisfies the renewal equation

O(Ot) ) + J(Ot-s)G(Ods), (32)

where

b(e,t) = E[eONO) ; ' > t] (33)

and

G(O,dte) E; ?,edt . (34)

Let Y, = N(S,) - N(Si.-I), i z 1.

Theorem 7. Suppose that N is a cwnulative process with respect to (S.) where 't has a spread

out distribution. If(i) there exists a root Wlv(O) to the equation
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E[exp(-wN(O)tlj + OYI)J = 1, (35)

(ii) E(0 'exp(-WN(O)t + ON(t))dt] < -, (36)

(iii) b(Ot) a E[exp(-WN(0)t + ON(t)) ; tj > t] < M (37)

for some M and (iv) b(O,t) - 0 as t -+ a*, then

*N(e,t)~-CN(O)eW'{s)1 as t -- , (38)

where

E[J•exp(-Njv(O)t + ON(t))dt]
E('Elexp(-WN(O)r1 + 0Y1)j ' (39)

so that (2) holds.

In applications of Theorem 7, it remains to verify conditions (i)-iv) in Theorem 7 and

(4)-(7). It seems difficult to obtain good general results, but something can be said under strong

conditions.

Theorem 8. Suppose that (N( t) ) is a cumulative process with respect to (S, I and that "z I has

a spread out distribution. In addition, suppome that P(@1 > KI) = 0 and

P(N(' ) > K2) = Oforsome K, and K2. Then a unique root WpN(O) to (35) edsts for all O

and assumptions (i)-(iv) of Theorem 7 hold for all O. Moreover. Wy is differentiable on R. with

derivative

-ef(vN(eI), 0)

W e)= ,fO) (40)

where

fN(y,0) a Elexp(-yr: + 1Y,)] • (41)



We can see the duality between N and Tin the basic equation (35). In particular, if we switch

the roles of S, and N(sj), then S. - N(S,) may be regenerative times and Tj. - T"._, S.

may be cycles associated with the inverse process T. When both N and T are cumulative

processes this way, we call N and T inverse cumulative processes. Then we have versions of

equation 2.5) for both processes, i.e., in addition to (35) for N, we have

E[exp(-Wr(0)Yj + Oxr)] 1 I. (42)

It follows from (35) and (42) that the decay rate functions WN and WT must be related by

-- 1T(--41N(e)) = e for all 0 where WvN(O) is finite, i.e.. which implies (12) and (13), which is

consistent with Theorem 1.

Chang [3] focuses on a discrete-time version of the point process N. The following comes

from his Example 2.2. Recall that a family of random variables Z ..... ,Zk is associated if

E[f1 (Z1 )...f.(Z.)] 2 E[f 1 (Z l)]...E[f.(Z.)]

for all nondecreasing real-valued functionsfi.

Theorem 9. (Chang) If N has stationary and associated increments, then t-1 log Ee&O ) is

nondecreasing in t and thus convergent, for each 1.

2. Proofs

We prove the theorems in the order: 2,3.1,6,7,8. (No further proof is needed for Theorems 4

and 5.)

Proof ofTheorem2. SinceT, > a if and only if N(a) < 1,

P(n-IT. > a) = P(T. > an) = P(N(an) < n),

from which (20) follows. From (20), we see that (21) holds if (22) holds, and (23) holds if (14)

holds. To go the other way, note that, for any E > 0,
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P(CtN(r) < a-') < P(N(aLlaJ < rtla/) = P(Trui > aLj1aJ)
: P (( ti/a)l Tr ola > a-tE)

when 1 is suitably large, where LWJ is the greatest integer less than or equal to x and rxl is the

least integer greater than or equal to x. Hence, if (21) holds, then

lim t-Ilog P(- 1 N(t) < a-
'-,4.

S i-m t-Ilog P(( Ftlal)-l Tr,,] > a-E) = a-'u(a-E)

Since E was arbitrary and u is continuous at a.

limt-'log P(-CIN(t) < a-') < a-'u(a)

Similarly,

P(t-cN(t) < a-')? P(N(artial < ýLuaJ) = P(T 1 xQ > artla/l)

2! P(( Uj~)-l T"oj > a +E)

for t suitably large. Hence, if (21) holds, then

1LMt-IlogP(t-IN(a) < a-i) a• a-lu(a) .

'-4-

Hence, (22) holds. A similar argument shows that (23) implies (24). 0

Proof of Theorem 3. We apply the characterizations of the LDP in (1.2.7) and (1.2.8) on p. 6 of

Dembo and Zeitoumi (5]. First we consider the upper bound. For any cc < *, let x, and x 2 be

the lower and upper boundary points for the level set WI(ai) needed for the upper bound. By the

lower semicontinuity of 1, any r with f Q 1,(X)C h the property that

r a (-n>,yl I V oY2,sc)

wheeY I < X I and Y2 > X2. Hencel, for such r.
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I- I ogPwtI~~ F) c- n t- I1ogP(t- 1Zmt e (-a.Yl I]iu[y2,a)

S t-1 log max{2P(t-'Z(t) S Yý) , 2P(t-'Z(t) Z Y2))

S (2/t) + max(C- log P(t-IZ(M) < Y1) , t-log P(t-IZ(t) Z Y 2 )

so that

rIm tlog P(-I Z(t)E e)

5 f=Fmax IM mt10o P(' I- Z(t) : YO F) 109t-o Pt- ZMt Z! Y2))
tI-....,

<5 maX{-AY) I-I(y2) ) <: - Ot,

sincey, < xI < X 2 < Y2.

Now we consider the lower bound. For any x in the domain of I. and any measurable r with

Xe ro, there is a neighborhood (x - 8 1 x + 82 ) c rF. Let 1 be the location of the minimum of I

and suppose that x < 1. (The argument when x Z 1 is essentially the same.) For any E given.

choose 82 sufficiently small that A(x + 82) < (x) + F- Now

lirt-Iiog P(t- Z(t)e F) a irn t-log P(-Z(t)E (X-81,X+6 2 ))

> lmt-4 log(P(t-CZ(t) < X+8 2 )-P(t-'Z(r) 5 X-80)

However, for any e',

P(t-'Z(t) ýS X+82) 2! e-'(/(z÷S+&3+')

and

P(t-I Z(t) : x-81) < e-04-80-2')

for all suitably large t. Hence,

P(t-t, at) S X +82)-P(t- aZ(t) S X-80 1 )-I(x+6 2)+2' k0

so tmaft, achooxsing e'. 81 and 82 so that I(x -8 )-I(x +82)-2c' > 0,
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iim r~ log P( Z&t)E e ) 2! -I(X +8 2 )-E' A 1x) - E- E

Since e and -E' were arbitray,

Lim t -log P(t -z(t) er n -1i(x).

In our proof of Theorem I we use the following two lemmas.

Lemma 1. Fore6 > 0,

E exp(eN(t)) 1 I + 10 V exp(tOX) P(N(t) > tx) dx

andt for 0 < Q

E exp(ON(t)) =-t0 JO" xp(ift)P(N(t) < ix)dx.

Proof. Note that

E exp(ON@t)) - I E f 0N(tyt oexp(tlOx)dx

o tof exp(tex)I(N(t) > tx)dx

to Joe*exp(tOx)P(N(t) > tx)dx

For 0 < 0, observe that

tofoeexp(tex) P(N(t) > tv) dx

=t6Jo exp(tOx)(1-P(N(t) S ir)dx

ti1 :exp(:Ox)dx -tOj Jexp(tOx) P(N( t) S tx) dx

-I - to0Jo ep(tf~x)P(N(t) < ix)dx

sine P(N(t) <ui) a P(NQt) 5 tx) alms suey wdresp~ctto Lebesque measure.

Lemma 2. If (2) and (4)-(7) hold for T, then

ffm-t' log Eeo'") <

forO < e < ~~(A)-P~
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Proof. For 0 <0- --WT(--) - I3,choose y so that 0 < y < W'((O)and IT(Y) > 0. To

see that this is possible, recall that IT is continuous where it is finmie and IT(0) = -T c(o-) if

Y'T = 0. (If yTt > 0, then IT(y) = ao for some y in this region.) Then, by the Gartner-Ellis

theorem for ( T, ),

limn-'log P(T. < yn) = -1(y)

Hence, there exists no such that for n : no

n-Ilog P(T, < yn) 5 -1(y) + e

whereE (I(y)-O)/2. Hence, forn Z no.

P(Tx < yn) < exp(-n(l(y)-E)) . (43)

Now

EeOMea) = j eeP(N(t) = n)

5 I + e9 eaP(N(t) > n)
nM0

< + e1 4 eO"P(T,, < t)
XWO

N -o
.. I + es I eP(T, < 1) + es ehP(T. < yn) . (44)XW no m= re/y

where

I/YJ L(',J a 9 )

1:e*"P(T, < t : e5 " se:r:l/(5 -1) (45)
X00 moo

and, by (43), fort > yno,

, eenP(T. -S ; - exp(On-n(1(y)-E))

exp(- rt/y (1i( y )-GO)/2 (46
1 -exp( - ((y)- 0)/2)
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Combining (44)-(46), we obtain the desired conclusion. M

Proof of Theorem 1. We do the proof in only one direction, since the proofs in the two

directions are similar. Suppose that ( T,.} satisfies (2) and (4-7) with decay rate function ' r.

Then, by the Girtner-Ellis theorem, { T,,) obeys the LDP with LD raw function IT = w-. By

Theorem 4, {N(t) } obeys the LDP with LD rate function l'v defined by (14)-(18). We then let

'vN = &. Since rN = IN, it is easy to see that (12)-(18) are valid. For example, it is easy to

see that WN in (12) has the properties of a decay rate function (nondecreasing, convex, W(O) = 0

and (2)-(5)) if and only if MT in (13) does. As indicated after Theorem 1, this is easy to see from

Figure 2. More formally, to establish convexity, suppose that WT is twice differentiable for

aT < ( < O3-(where VW'(O) > 0). SincelIN(e) = -- ' (-o), wT(--1vN(0)) = -eand

- .'1!(w,• (-o.))Ž0
1V.( 1T (-_ ))3 •

Then we can represent a general W as the limit of a sequence {(T. :•n Z 1 where each WT. is

strictly increasing and twice continuously differentiable in the interval (CtT.OT).

lvNn(e) -4 ivN(O)asn - •. Since jv,, isconvex foreachn, sois IN.

Given WT and 4N in (12) and (13), it is straightforward to verify that the convex conjugates

IT = 'v and IN = W; defined by (6) have the properties (14)-(18). For example, for

"ý5 x 5 y"N and x > 0,

¥W;(x) sup(Ox-WN (O) 0 e RI

-SUPIOX-'VN(e) MN Si 6 e O N)
sup(I*-,v-'(e) - e tN s w , () s pi

sup -WT(O)x + :.tN :5 -WT(e) < ON I

X sUp{ (e/X)-WT(O) : •s s -VT(O) :5ION I

X SUP p(0/X)- V(e) •vi' (-PN) S 0 : Wi'(- ) !

= x sup{(0/x) - WT(e) OCT !S 0 5 OiT

x sup((O/x) - 4T(e) :O e RI = x'.(1/x).
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For Y$N 0 =x, take the limit as x -~0, obtaining

=ýO liM~4W = liMY i4(Y)

and

r ()=Urn - lim Wi(y)x-#0 X y~

A similar argument yields W N = rN and WT =ATI given IN nd IT-

We now show tha (2) holds for IV when 0 < 0 < -'VT(-Gc) 7,.By Lemma 1, it

suffices to prove hat

1-10 log J exp(t~x)P(N(t) > ix)dx -+ jvN(0) (47)

ByLemma2,wecanchooseowithe < 6 < -WTr(-oo)and

a itr'iog Ee Ni)o < 0

For e > 0Ogiven, let Mbe the constant

M = -e/00

Then, by Markov's inequ~ality,

f exp(t0x) P(N(t) > tgx dx

:5 &iwl) iexp(:0x - tex) dx

:5 -r-.exp(-.t(0-9)M- log EeNP('))
t(0-0)

1 81~ ---- exp(-t4(9-0)M-k-eJ) - ----- xp(2et) (48)
t(8-0) 00e-0)

for t sufficiently large. On the other hand.



Jo, exp(fex)P(N&i) > Lx)dx

=, f exp(tOx)P(N(t) > x)dx

:Si f exp(tO(i+l)M/n)P(N(t) > itM/n)dx
iw - M/K

-~ exp(tO(i+l1) M/z) P(N(t) > kfM/n)
n -0

n iwO

M 1e~ n 
1

5 -telel yexp(t[9Mi/n - inf IN(x)I) ,(49)

n iwO zj/

where n is an arbitrary positive integer. Combining (48) and (49), we obtain

rlImrlogjexp(tex)P(N(t) > tx)dx

S2E+ . + max(M-'- inf IN(X)J
n oss n __ i

N

by Lemma 1.2.15 on p. 7 of Dembo and Zeitouni [5). However,

max I -m - iuf IN (x)1 ) sup{Ox-It,(x)I IV 'N(0)
Osisn - n5 ZiAJ/ x

Letting E -+ 0Oand n -+ a@, we complete the im proof.

We now turn to the lower bound. For the same 0 and a new positive c, choose 8and xO such

tam

OX - IN (X) 2!SU su( Y - IN (Y)) E

for Ix-xOI < 8. Then

foo exp(tOx) P(N(t)> ax) dx 2: 1,$_ exp(tex) P(N(t)>t(x0 +8)) dx

Z 28 exp(r9(xO-8))P(C1-N(1) > oB

so that
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jjm~l-log 1exp(tOx)P(N(g) > Lx)dx

2 e(xo-S)-IN(xo+S) = O(xoe-8)-IN(xo+S)-28

2:sp U{y -INi(y) 128-E

Finally, let 8 --+ 0 and E -0 to complete the 1m proof. Combining dhe 1mand li proofs

yields (47).

We now consider the case in which 0 < 0. By Lemma 1. it suffices to showthaz

t- Ilog C0 exp(tOx)P(N(t) < ztr)dx -+ WNv(O) as t -+ c (50)

Let~ 1 44(0)and recall OW IN Ox) = 0. Let xvy - mnax (x,y). Then note Owa

f048exp(tex)P(N(t) < tx)dx

:5 fJexp(tex) P(N(t) < aj)dxz + Jexp(tOx) dx
0

iWO

S .- : exp(161i/h - dN(I(i +l)/n)+rr)-(t:OY'exp(tOx.I)

for t sufficiently large. Hence,

51 t I og xp(tex)P(N(0 <mt)dx

:5ma ((O-i/')-IN(!(i+1 )/FI) + C)v9x-

S sup(9X-IN(X) + c-Glut JvG

S(ir(O) + a-Olln)vOx.

NowletE-+ 0 and n -4so, and note that W(O) > OW'(O)for I <0, tocomplete the proof.
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We now rum to the lower bound. For E > 0 given, let 8 > 0 and xo be such that

Ox - IN(X) > sup(Oy-Iv(y))} - E
Y

Then

J~exp(t~x)P(N(t) < )d2 -6 exp(tOx)P(N(t) < t(xo-8))dx

2 28exp (tO(xo + 8)P(N(t) < t(xo-8)) ,

so that

UrM rI'og J*exp(tOx)P(N(t) < Lx)dx"0

Z 0(Xo + 8)-hN(xo-8) = O(xo- 8)-lN(xo-8) + 208

Z sup{Oy - iN(y)) -E + 208.

2 WvN(0) - e + 208.

Now let 8 -+ 0 and e -+ 0 to complete the proof of (50).

Finally, it remains to consider tdo upper boundary point [Ok when P, <as. Clearly,

1MtI- Ilog E~epTft WN(e)

forany0 < 0ý. Thus, whem N(p7) =WN

Umt-Ilog E&Wf(t = 'V(P1)- + "
I-¢.-

The only ambiguous case is when pk < m andlVN(Pj) <-. <

Proof of Theorem 6. It is easy to see that the inverse map in (26) is continuous from (S ,M,)

to(STX,MI)foralltI andt2 when it is modified in the obvious way:

je-,1.,(t) = min(tIx- 1 (t) .0 :5 t 5 t2. (51)

When t I is suitably large, the minimum is not needed in (S1). Now suppose that the LDP holds
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for ({ n- T L.,j n 2t 1 ) with (29). By the contraction principle in §4.2 of Dembo and Zeitoumi

(1992), the LDP holds for (n- N(nt) : n 2 1 ) in (S•,M,) with good rate function

'I

71(' = inf f IT( (ts))ds :We A %,,(o).' = . (52)
0

In (52), t must be w- according to (5 1). To obtain the inverse map in (26), for* given, let

12 = q(tl). Then, forwE s ,, (0)and1-V1 = t'

I'

w( f IT(*(s)) s
0

=f, ITGW(1/0('(S)))dS
041

- I, Ir(1/(s))(s)ds
0(0)

= IN (j(s)) ds. a
0

Proof of Theorem 7. In general, G(e,.) in (34) is not a proper probability distribution.

However, our choice of W(O) in (35) guarantees that

F(e,dt) s exp(-1W/(O)t)G(O,dt) (53)

is a probability distribution function. Furthermore, F(Odt) is equivalent to P(cr1 ez dt), so that

F(O..) is spread our. Hence, we can apply Smith's key renewal theorem. (4.4) on p. 120 of

Asmussen [1], to the renewal equation

;(e6,) - L(oa) + *(e,t-s)F(,.ds),. (54)

where 9(e, t) is in (37) and

=(Ot) = exp(-W(0)t)O(et) (55)

to obtain
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- fbi(8.s) ds
- as - .(56)

foF(e,dl)

(Conditions (ii)-(iv) imply that 9e(0,t) is directly Riemann integrable, using Proposition 4.1 (ii)

of Asmussen [I]; see Proposition 9 of Glynn and Whitt (91 for a related argument.) By Fubin's

theorem, we see that

Jbg(e~s)d = JEfexp(-W(o)t + ON(t)); 'r > jdt

= EJO exp(-t(O)t + 8N(t))J('c] > t)dt

El 1J0 'TIexp(-W(e) + eN(t))dtl (57)

and

JIF(e.dt) = J E Erexp(-w(e)t + ON(t);'C1 ed,]

= E[exp(-W(O), 1 + OY 1)•]J . (48)

Combining (56)-(58). yields the desired (38) and (39). a

Proof of Theorem 8. Under the boundedness assumptions, f(yO) in (41) is bounded by

exp(lylK1 + 1e1K 2) and infinitely differentiable in R2 . Also, for each e, f(.,o) is strictly

decreasing thf(y,) --+. 0 MaY + - I andf(y,e) - + a* as y -- - c-. Hence, mhe root W(e)

of (35) exists for each 0. Moreover, it is easy to see that assumptions (ii)--(v) hold.

To see that W is differentiable with derivative (40). apply the implicit function theorem with

(35). Note that W/'y f(y,e) < 0 for all (y,8), so that the denominator is non-zero.
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